JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.TECH. ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE & SYLLABUS (2016-17)

II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA301BS</td>
<td>Mathematics – IV</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>EC302ES</td>
<td>Analog Electronics</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EC303ES</td>
<td>Electrical Technology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>EC304ES</td>
<td>Signals and Stochastic Process</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EC305ES</td>
<td>Network Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EC306ES</td>
<td>Electronic Devices and Circuits Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>EC307ES</td>
<td>Basic Simulation Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>EC308ES</td>
<td>Basic Electrical Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>*MC300ES</td>
<td>Environmental Science and Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>21</td>
<td>5</td>
<td>9</td>
<td>24</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EC401ES</td>
<td>Switching Theory and Logic Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EC402ES</td>
<td>Pulse and Digital Circuits</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EE404ES</td>
<td>Control Systems</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>EC405ES</td>
<td>Analog Communications</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>SM405MS</td>
<td>Business Economics and Financial Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EC406ES</td>
<td>Analog Communications Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>EC407ES</td>
<td>Pulse and Digital Circuits Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>EC408ES</td>
<td>Analog Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>*MC400HS</td>
<td>Gender Sensitization Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>18</td>
<td>2</td>
<td>12</td>
<td>24</td>
</tr>
</tbody>
</table>
MA301BS: MATHEMATICS - IV
(Complex Variables and Fourier Analysis)

B.Tech. II Year I Sem.
L T P C
4 1 0 4

Prerequisites: Foundation course (No Prerequisites).

Course Objectives: To learn
- differentiation and integration of complex valued functions
- evaluation of integrals using Cauchy’s integral formula
- Laurent’s series expansion of complex functions
- evaluation of integrals using Residue theorem
- express a periodic function by Fourier series and a non-periodic function by Fourier transform
- to analyze the displacements of one dimensional wave and distribution of one dimensional heat equation

Course Outcomes: After learning the contents of this paper the student must be able to
- analyze the complex functions with reference to their analyticity, integration using Cauchy’s integral theorem
- find the Taylor’s and Laurent’s series expansion of complex functions
- the bilinear transformation
- express any periodic function in term of sines and cosines
- express a non-periodic function as integral representation
- analyze one dimensional wave and heat equation

UNIT – I
Functions of a complex variable: Introduction, Continuity, Differentiability, Analyticity, properties, Cauchy, Riemann equations in Cartesian and polar coordinates. Harmonic and conjugate harmonic functions-Milne-Thompson method

UNIT - II

UNIT – III
Evaluation of Integrals: Types of real integrals:
(a) Improper real integrals \(\int_{-\infty}^{\infty} f(x)dx \)
(b) \(\int_{c}^{c+2\pi} f(\cos \theta, \sin \theta)d\theta \)

Bilinear transformation- fixed point- cross ratio- properties- invariance of circles.
UNIT – IV

Fourier series and Transforms: Introduction, Periodic functions, Fourier series of periodic function, Dirichlet’s conditions, Even and odd functions, Change of interval, Half range sine and cosine series.
Fourier integral theorem (without proof), Fourier sine and cosine integrals, sine and cosine, transforms, properties, inverse transforms, Finite Fourier transforms.

UNIT – V

Applications of PDE: Classification of second order partial differential equations, method of separation of variables, Solution of one dimensional wave and heat equations.

TEXT BOOKS:

3. Advanced engineering Mathematics with MATLAB by Dean G. Duffy

REFERENCES:

EC302ES: ANALOG ELECTRONICS

B.Tech. II Year I Sem. L T P C 4 1 0 4

Course Objectives:

- To introduce circuit realizations with components such as diodes, BJTs and transistors studied earlier.
- To give understanding of various types of amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.
- To familiarize the Concept of feedback in amplifiers so as to differentiate between negative and positive feedback.

Course Outcomes: Upon completion of the Course, the students will be able to:

- Design and analyze small signal amplifier circuits applying the biasing techniques learnt earlier.
- Cascade different amplifier configurations to obtain the required overall specifications like Gain, Bandwidth, Input and Output interfacing Impedances.
- Design and realize different classes of Power Amplifiers and tuned amplifiers useable for audio and Radio applications.
- Utilize the Concepts of negative feedback to improve the stability of amplifiers and positive feedback to generate sustained oscillations.

UNIT – I
Analysis And Design of Small Signal Low Frequency BJT Amplifiers: Review of transistor biasing, Classification of Amplifiers – Distortion in amplifiers, Analysis of CE, CC, and CB Amplifiers and CE Amplifier with emitter resistance, low frequency response of BJT Amplifiers, effect of coupling and bypass capacitors, Design of single stage RC coupled amplifier Different coupling schemes used in amplifiers, Analysis of Cascaded RC Coupled amplifiers, Cascode amplifier, Darlington pair,

UNIT – II
Transistor At High Frequency: The Hybrid- pi (π) – Common Emitter transistor model, CE short circuit current gain, current gain with resistive load, single stage CE transistor amplifier response, Gain-bandwidth product.

UNIT – III
UNIT –III

UNIT – IV
Tuned Amplifiers: Introduction, Q-Factor, Small Signal Tuned Amplifiers, frequency response of tuned amplifiers

TEXT BOOKS:
2. Electronic Devices and Circuits, S. Salivahanan, N. Suresh Kumar, A Vallvaraj, 5th Edition, MC GRAWHILL EDUCATION.
3. Electronics circuits and applications , Md H Rashid, Cengage 2014

REFERENCES:
1. Integrated Electronics, Jacob Millman, Christos C Halkias, McGraw Hill Education
3. Electronic Devices Conventional and current version -Thomas L. Floyd 2015, person
Course Objectives:
- To know the basic principle of DC generators and motors.
- To know the basic principle of single phase transformers.
- To understand the basic principle of three-phase induction motor and alternators.
- To understand the basic principle of special motors and electrical instruments.

Course Outcome:
- To analyze the performance of dc generators and motors.
- To analyze the performance of transformers.
- To learn the in-depth knowledge on three phase induction motors.
- To analyze the performance of special motors and electrical instruments in real time applications.

UNIT - I
D.C Generators and DC Motors: Principle of operation of DC Machines- EMF equation – Types of generators – Magnetization and load characteristics of DC generators, DC Motors – Types of DC Motors – Characteristics of DC motors – 3-point starters for DC shunt motor – Losses and efficiency – Swinburne’s test – Speed control of DC shunt motor – Flux and Armature voltage control methods.

UNIT - II

UNIT - III

UNIT - IV
UNIT - V
Special Motors & Electrical Instruments: Principle of operation - Shaded pole motors – Capacitor motors, AC servomotor, AC tachometers, Synchros, Stepper Motors – Characteristics, Basic Principles of indicating instruments – Moving Coil and Moving iron Instruments (Ammeters and Voltmeters).

TEXT BOOKS:

REFERENCES:
3. Essentials of Electrical and Computer Engineering - David V. Kerns, JR. J. David Irwin
Course Objectives:

- This gives the basics of Signals and Systems required for all Electrical Engineering related courses.
- This gives concepts of Signals and Systems and its analysis using different transform techniques.
- This gives basic understanding of random process which is essential for random signals and systems encountered in Communications and Signal Processing areas.

Course Outcomes: Upon completing his course, the student will be able to

- Represent any arbitrary analog or Digital time domain signal in frequency domain.
- Understand the importance of sampling, sampling theorem and its effects.
- Understand the characteristics of linear time invariant systems.
- Determine the conditions for distortion less transmission through a system.
- Understand the concepts of Random Process and its Characteristics.
- Understand the response of linear time Invariant system for a Random Processes.

UNIT - I
Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex functions, Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum function.

Signal Transmission through Linear Systems: Linear System, Impulse response, Response of a Linear System, Linear Time Invariant (LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI system, Filter characteristics of Linear Systems, Distortion less transmission through a system, Signal bandwidth, System bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and Rise time. Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution, Convolution property of Fourier Transforms

UNIT – II

Sampling: Sampling theorem – Graphical and analytical proof for Band Limited Signals, Reconstruction of signal from its samples, Effect of under sampling – Aliasing.

UNIT – III

Laplace Transforms and Z–Transforms: Laplace Transforms: Review of Laplace Transforms (L.T), Partial fraction expansion, Inverse Laplace Transform, Concept of Region of Convergence (ROC) for Laplace Transforms, Constraints on ROC for various classes of signals, Properties of L.T, Relation between L.T and F.T of a signal, Laplace Transform of certain signals using waveform synthesis.

UNIT – IV

UNIT- V:

TEXT BOOKS:
1. Signals, Systems & Communications - B.P. Lathi , 2013, BSP.

REFERENCE BOOKS:
EC305ES: NETWORK ANALYSIS

B.Tech. II Year I Sem. L T P C
 3 1 0 3

Pre-requisite: Basic Electrical & Electronics Engineering

Course Objectives: Objectives of this course are

- To understand the basic concepts on RLC circuits.
- To know the behavior of the steady states and transient states in RLC circuits.
- To know the basic Laplace transforms techniques in periodic waveforms.
- To understand the two port network parameters.
- To understand the properties of LC networks and filters.

Course Outcomes: After completion of this course student:

- Gains the knowledge on Basic network elements.
- Learns and analyze the RLC circuits’ behavior in detail.
- Analyze the performance of periodic waveforms.
- Learns and gain the knowledge in characteristics of two port network parameters (Z, Y, ABCD, h & g).
- To analyze the filter design concepts in real world applications.

UNIT - I

UNIT - II
Steady state and transient analysis of RC, RL and RLC Circuits, Circuits with switches, step response, 2nd order series and parallel RLC Circuits, Root locus, damping factor, overdamped, underdamped, critically damped cases, quality factor and bandwidth for series and parallel resonance, resonance curves

UNIT - III
Network Analysis using Laplace transform techniques, step, impulse and exponential excitation, response due to periodic excitation, RMS and average value of periodic waveforms.

UNIT - IV
Two port network parameters, Z, Y, ABCD, h and g parameters, Characteristic impedance, Image transfer constant, image and iterative impedance, network function, driving point and transfer functions – using transformed (S) variables, Poles and Zeros.
UNIT - V
Standard T, π, L Sections, Characteristic impedance, image transfer constants, Design of Attenuators, impedance matching network, T and π Conversion, LC Networks and Filters: Properties of LC Networks, Foster’s Reactance theorem, design of constant K, LP, HP and BP Filters, Composite filter design.

TEXT BOOKS

REFERENCES
EC306ES: ELECTRONIC DEVICES AND CIRCUITS LAB

B.Tech. II Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Objectives

- To identify various components and testing of active devices.
- To study and operation of millimeters, function generators, regulated power supplies, and CRO. To know the characteristics of various active devices.
- To study frequency response amplifier.

Course Outcomes:

- After completion of the course the student is able to apply various devices to real-time problems.
- Compute frequency response of various amplifiers.

Part A: (Only for viva-voce Examination)

ELECTRONIC WORKSHOP PRACTICE (in 3 lab sessions):

1. Identification, Specification, testing of R,L,C components (color codes), Potentiometers (SPDT, DPDT, and DIP), Coils, Gang Condensers, Relays, Bread Board, PCB’s
2. Identification, Specification, testing of Active devices: Diodes, BJT, Low power JFET’s, MOSFET’s, Power Transistors, LED’s, LCD’s, SCR, UJT.
3. Study and operation of:
 i. Multimeters (Analog and Digital)
 ii. Function Generator
 iii. Regulated Power Supplies
 iv. CRO

Part B: (For Laboratory Examination – Minimum of 12 experiments)

1. Forward and Reverse Bias V-I characteristics of PN junction Diode.
2. Zener diode V-I characteristics and Zener diode as voltage regulator.
3. Half Wave rectifier, with and without filters
4. Full wave rectifier with and without filters.
5. Input and output Characteristics of a BJT in CE configuration and calculation of h-parameters.
6. Input and output Characteristics of a BJT in CB configuration and calculation of h-parameters.
7. FET characteristics in CS configuration.
8. Design of self bias circuit
12. SCR characteristics.
13. UJT characteristics.
PART C: Equipment required for Laboratory:
1. Regulated Power supplies (RPS) : 0-30 V
2. CRO’s : 0-20 MHz.
3. Function Generators : 0-1 MHz.
4. Multimeters
5. Decade Resistance Boxes/Rheostats
6. Decade Capacitance Boxes
7. Ammeters (Analog or Digital) : 0-20 µA, 0-50 µA, 0-100 µA, 0-200 µA, 10 mA.
8. Voltmeters (Analog or Digital) : 0-50 V, 0-100 V, 0-250 V
9. Electronic Components: Resistors, Capacitors, BJTs, LCDs, SCRs, UJT, FETs, LEDS, MOSFETs, Diodes-Ge & Si type, Transistors – NPN, PNP type.
EC307ES: BASIC SIMULATION LAB

B.Tech. II Year I Sem.

Note:
- All the experiments are to be simulated using MATLAB or equivalent software
- Minimum of 15 experiments are to be completed

List of Experiments:
1. Basic Operations on Matrices.
2. Generation of Various Signals and Sequences (Periodic and Aperiodic), such as Unit Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc.
3. Operations on Signals and Sequences such as Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
4. Finding the Even and Odd parts of Signal/Sequence and Real and Imaginary parts of Signal.
5. Convolution for Signals and sequences.
6. Auto Correlation and Cross Correlation for Signals and Sequences.
8. Computation of Unit sample, Unit step and Sinusoidal responses of the given LTI system and verifying its physical realizability and stability properties.
10. Finding the Fourier Transform of a given signal and plotting its magnitude and phase spectrum.
12. Locating the Zeros and Poles and plotting the Pole-Zero maps in S-plane and Z-Plane for the given transfer function.
17. Verification of Weiner-Khinchine Relations.
EC308ES: BASIC ELECTRICAL ENGINEERING LAB

B.Tech. II Year I Sem.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: Minimum 6 experiments from each part are to be conducted

PART – A

1. Verification of KVL and KCL.
2. Serial and Parallel Resonance – Timing, Resonant frequency, Bandwidth and Q-factor determination for RLC network.
4. Two port network parameters – Z-Y Parameters, chain matrix and analytical verification.
5. Two post network parameters -ABCD and h parameters
6. Verification of Superposition and Reciprocity theorems.
7. Verification of maximum power transfer theorem. Verification on DC, verification on AC with Resistive and Reactive loads.
8. Experimental determination of Thevenin’s and Norton’s equivalent circuits and verification by direct test.

PART – B

2. Swinburne’s Test on DC shunt machine (Predetermination of efficiency of a given DC Shunt machine working as motor and generator).
4. OC & SC tests on Single-phase transformer (Predetermination of efficiency and regulation at given power factors and determination of equivalent circuit).
5. Brake test on 3-phase Induction motor (performance characteristics).
6. Regulation of alternator by synchronous impedance method.
7. Load test on single phase transform
MC300ES: ENVIRONMENTAL SCIENCE AND TECHNOLOGY

B.Tech. II Year I Sem.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives:
1. Understanding the importance of ecological balance for sustainable development.
2. Understanding the impacts of developmental activities and mitigation measures.
3. Understanding the environmental policies and regulations

Course Outcomes:
1. Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT-I
Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT-II
Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

UNIT-III
Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT-IV
Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics
of e-Waste and its management. **Pollution control technologies:** Wastewater Treatment methods: Primary, secondary and Tertiary.

UNIT-V

TEXT BOOKS:
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:
Course Objectives:
This course provides in-depth knowledge of switching theory and the design techniques of digital circuits, which is the basis for design of any digital circuit. The main objectives are:

- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand common forms of number representation in digital electronic circuits and to be able to convert between different representations.
- To implement simple logical operations using combinational logic circuits.
- To design combinational logic circuits, sequential logic circuits.
- To impart to student the concepts of sequential circuits, enabling them to analyze sequential systems in terms of state machines.
- To implement synchronous state machines using flip-flops.

Course Outcomes: Upon completion of the course, students should possess the following skills:

- Be able to manipulate numeric information in different forms, e.g. different bases, signed integers, various codes such as ASCII, Gray and BCD.
- Be able to manipulate simple Boolean expressions using the theorems and postulates of Boolean algebra and to minimize combinational functions.
- Be able to design and analyze small combinational circuits and to use standard combinational functions/building blocks to build larger more complex circuits.
- Be able to design and analyze small sequential circuits and devices and to use standard sequential functions/building blocks to build larger more complex circuits.

UNIT – I
Number System and Boolean algebra And Switching Functions: Review of number systems, Complements of Numbers, Codes- Binary Codes, Binary Coded Decimal Code and its Properties, Unit Distance Codes, Error Detecting and Correcting Codes.

UNIT - II
UNIT - III

Registers and Counters: Shift Registers, Data Transmission in Shift Registers, Operation of Shift Registers, Shift Register Configuration, Bidirectional Shift Registers, Applications of Shift Registers, Design and Operation of Ring and Twisted Ring Counter, Operation Of Asynchronous And Synchronous Counters.

UNIT - IV

UNIT - V
Sequential Circuits - II: Finite state machine-capabilities and limitations, Mealy and Moore models-minimization of completely specified and incompletely specified sequential machines, Partition techniques, and Merger chart methods-concept of minimal cover table.

TEXT BOOKS:

REFERENCE BOOKS:
EC402ES: PULSE AND DIGITAL CIRCUITS

B.Tech. II Year II Sem. L T P C
4 0 0 4

Course Objectives:
- To explain the complete response of R-C and R-L-C transient circuits.
- To explain clippers, clampers, switching characteristics of transistors and sampling gates.
- To construct various multivibrators using transistors, design of sweep circuits and sampling gates.
- To discuss and realize logic gates using diodes and transistors.

Course Outcomes: At the end of the course, the student will be able to:
- Understand the applications of diode as integrator, differentiator, clippers, clampler circuits.
- Learn various switching devices such as diode, transistor, SCR. Difference between logic gates and sampling gates.
- Design multivibrators for various applications, synchronization techniques and sweep circuits.
- Realizing logic gates using diodes and transistors.
- Understanding of time and frequency domain aspects.
- Importance of clock pulse and its generating techniques.

UNIT - I
Linear Wave Shaping: High pass and low pass RC circuits and their response for Sinusoidal, Step, Pulse, Square, & Ramp inputs, High pass RC network as Differentiator, Low pass RC circuit as an Integrator, Attenuators and its application as a CRO Probe, RL and RLC Circuits and their response for Step Input, Ringing Circuit.

UNIT - II
Non-Linear Wave Shaping: Diode clippers, Transistor clippers, Clipping at two independent levels, Comparators, Applications of Voltage comparators. Clamping Operation, Clamping circuit taking Source and Diode resistances into account, Clamping Circuit Theorem, Practical Clamping Circuits, Effect of Diode Characteristics on Clamping Voltage, Synchronized Clamping.

UNIT - III
Switching Characteristics of Devices: Diode as a Switch, Piecewise Linear Diode Characteristics, Diode Switching times, Transistor as a Switch, Break down voltages, Transistor in Saturation, Temperature variation of Saturation Parameters, Transistor-switching times, Silicon-controlled-switch circuits.
UNIT – IV

Time Base Generators: General features of a Time base Signal, Methods of Generating Time Base Waveform, Transistor Miller Time Base generator, Transistor Bootstrap Time Base Generator, Transistor Current Time Base Generators, Methods of Linearity improvement.

UNIT - V

Sampling Gates: Basic operating principles of Sampling Gates, Unidirectional and Bi-directional Sampling Gates, Four Diode Sampling Gate, Reduction of pedestal in Gate Circuits

Realization of Logic Gates Using Diodes & Transistors: AND, OR and NOT Gates using Diodes and Transistors, DCTL, RTL, DTL, TTL and CML Logic Families and its Comparison.

TEXT BOOKS:
2. Pulse, Switching and Digital Circuits - David A. Bell, 5th edition 2015, OXFORD University Press

REFERENCE BOOKS:
2. Pulse and Digital Circuits – A. Anand Kumar, 2005, PHI.
Course Objective: To learn the basic Business types, impact of the Economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm’s financial position by analysing the Financial Statements of a Company.

UNIT – I
Introduction to Business and Economics:

UNIT – II
Demand and Supply Analysis:
Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

UNIT- III
Production, Cost, Market Structures & Pricing:
Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.
Cost analysis: Types of Costs, Short run and Long run Cost Functions.
Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, and Monopolistic Competition.
UNIT - IV

UNIT - V

TEXT BOOKS:

REFERENCES:
Prerequisite: Ordinary Differential Equations & Laplace Transform, Mathematics I

Course objectives:
- To understand the different ways of system representations such as Transfer function representation and state space representations and to assess the system dynamic response
- To assess the system performance using time domain analysis and methods for improving it
- To assess the system performance using frequency domain analysis and techniques for improving the performance
- To design various controllers and compensators to improve system performance

Course outcomes: After completion of this course the student is able to
- Improve the system performance by selecting a suitable controller and/or a compensator for a specific application
- Apply various time domain and frequency domain techniques to assess the system performance
- Apply various control strategies to different applications (example: Power systems, electrical drives etc…)
- Test system Controllability and Observability using state space representation and applications of state space representation to various systems.

UNIT – I
Transfer Function Representation: Transfer Function of DC Servo motor - AC Servo motor- Synchro transmitter and Receiver, Block diagram representation of systems considering electrical systems as examples - Block diagram algebra – Representation by Signal flow graph - Reduction using mason’s gain formula.

UNIT-II
UNIT – III

Stability Analysis: The concept of stability - Routh stability criterion – qualitative stability and conditional stability.

Root Locus Technique: The root locus concept - construction of root loci-effects of adding poles and zeros to \(G(s)H(s) \) on the root loci.

Frequency Response Analysis: Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Phase margin and Gain margin-Stability Analysis from Bode Plots.

UNIT - IV

Stability Analysis In Frequency Domain: Polar Plots, Nyquist Plots and applications of Nyquist criterion to find the stability - Effects of adding poles and zeros to \(G(s)H(s) \) on the shape of the Nyquist diagrams.

Classical Control Design Techniques: Compensation techniques – Lag, Lead, and Lead-Lag Controllers design in frequency Domain, PID Controllers.

UNIT – V

State Space Analysis of Continuous Systems: Concepts of state, state variables and state model, derivation of state models from block diagrams, Diagonalization- Solving the Time invariant state Equations- State Transition Matrix and its Properties.

TEXT BOOKS:

REFERENCE BOOKS:

Course Objectives:

- To develop ability to analyze system requirements of analog communication systems.
- To understand the need for modulation.
- To understand the generation, detection of various analog modulation techniques and also perform the mathematical analysis associated with these techniques.
- To acquire knowledge to analyze the noise performance of analog modulation techniques.
- To acquire theoretical knowledge of each block in AM and FM receivers.
- To understand the pulse modulation techniques.

Course Outcomes:

- Able to analyze and design various modulation and demodulation analog systems.
- Understand the characteristics of noise present in analog systems.
- Study of signal to Noise Ration (SNR) performance, of various Analog Communication systems.
- Analyze and design the various Pulse Modulation Systems.
- Understand the concepts of Multiplexing: Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM).

UNIT - I

Amplitude Modulation: Introduction to communication system, Need for modulation, Frequency Division Multiplexing , Amplitude Modulation, Definition, Time domain and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves, square law Modulator, Switching modulator, Detection of AM Waves; Square law detector, Envelope detector, Double side band suppressed carrier modulators, time domain and frequency domain description, Generation of DSBSC Waves, Balanced Modulators, Ring Modulator, Coherent detection of DSB-SC Modulated waves, COSTAS Loop.

UNIT - II

UNIT - III

UNIT - IV

Noise: Resistive Noise Source (Thermal), Arbitrary Noise Sources, Effective Noise Temperature, Average Noise Figures, Average Noise Figure of cascaded networks, Narrow Band noise, Quadrature representation of narrow band noise, & its properties
Noise in Analog communication System, Noise in DSB and SSB System Noise in AM System, Noise in Angle Modulation System, Threshold effect in Angle Modulation System, Pre-emphasis and de-emphasis.

UNIT - V

Receivers: Radio Receiver - Receiver Types - Tuned radio frequency receiver, Super heterodyne receiver, RF section and Characteristics - Frequency changing and tracking, Intermediate frequency, AGC, FM Receiver, Comparison with AM Receiver, Amplitude limiting.

PULSE MODULATION: Types of Pulse modulation, PAM (Single polarity, double polarity) PWM: Generation and demodulation of PWM, PPM, Generation and demodulation of PPM, Time Division Multiplexing.

TEXTBOOKS:

REFERENCES:

3. Analog and Digital Communication – K. Sam Shanmugam, Willey, 2005
EC406ES: ANALOG COMMUNICATIONS LAB

B.Tech. II Year II Sem. L T P C
0 0 3 2

Note:
• Minimum 12 experiments should be conducted:
• Experiments are to be simulated first either using MATLAB, Comsim or any other simulation software tools and then testing to be done in hardware.

LIST OF EXPERIMENTS:
1. Amplitude modulation and demodulation.
2. DSB-SC Modulator & Detector
3. SSB-SC Modulator & Detector (Phase Shift Method)
4. Frequency modulation and demodulation.
5. Study of spectrum analyzer and analysis of AM and FM Signals
6. Pre-emphasis & de-emphasis.
7. Time Division Multiplexing & De multiplexing
8. Frequency Division Multiplexing & De multiplexing
9. Verification of Sampling Theorem
10. Pulse Amplitude Modulation & Demodulation
11. Pulse Width Modulation & Demodulation
12. Pulse Position Modulation & Demodulation
14. AGC Characteristics.
15. PLL as FM Demodulator
EC407ES: PULSE AND DIGITAL CIRCUITS LAB

B.Tech. II Year II Sem.

Note:

Minimum Twelve experiments to be conducted:

1. Linear wave Shaping
 a. RC Low Pass Circuit for different time constants
 b. RC High Pass Circuit for different time constants

2. Non-linear wave shaping
 a. Transfer characteristics and response of Clippers:
 i) Positive and Negative Clippers
 ii) Clipping at two independent levels
 b. The steady state output waveform of clampsers for a square wave input
 i) Positive and Negative Clampers
 ii) Clamping at different reference voltage

3. Comparison Operation of different types of Comparators
4. Switching characteristics of a transistor
5. Design a Bistable Multivibrator and draw its waveforms
6. Design an Astable Multivibrator and draw its waveforms
7. Design a Monostable Multivibrator and draw its waveforms
8. Response of Schmitt Trigger circuit for loop gain less than and greater than one
9. UJT relaxation oscillator
10. The output- voltage waveform of Boot strap sweep circuit
11. The output- voltage waveform of Miller sweep circuit
12. Pulse Synchronization of An Astable circuit
13. Response of a transistor Current sweep circuit
14. Sampling gates
 a. Response of Unidirectional gate
 b. Response of Bidirectional gate using transistors
15. Study of logic gates
Note:
- Minimum 12 experiments should be conducted:
- Experiments are to be simulated using Multisim or P-spice or Equivalent Simulation and then testing to be done in hardware.

LIST OF EXPERIMENTS:
1. Common Emitter Amplifier
2. Common Base Amplifier
3. Common Source amplifier
4. Two Stage RC Coupled Amplifier
5. Current Shunt Feedback Amplifier
6. Voltage Series Feedback Amplifier
7. Cascode Amplifier
8. Wien Bridge Oscillator using Transistors
9. RC Phase Shift Oscillator using Transistors
10. Class A Power Amplifier (Transformer less)
11. Class B Complementary Symmetry Amplifier
12. Hartley Oscillator
13. Colpitt’s Oscillator
14. Single Tuned Voltage Amplifier
MC400HS: GENDER SENSITIZATION LAB

B.Tech. II Year II Sem. L T P C
 0 0 3 0

Course Objectives:
- To develop students’ sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Course Outcomes:
- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature, and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT - I
UNDERSTANDING GENDER
Gender: Why Should We Study It? *(Towards a World of Equals: Unit -1)*
Socialization: Making Women, Making Men *(Towards a World of Equals: Unit -2)*

UNIT - II
GENDER AND BIOLOGY:
Missing Women: Sex Selection and Its Consequences *(Towards a World of Equals: Unit -4)*
Declining Sex Ratio. Demographic Consequences.
Gender Spectrum: Beyond the Binary *(Towards a World of Equals: Unit -10)*
Two or Many? Struggles with Discrimination.
UNIT - III
GENDER AND LABOUR

Housework: the Invisible Labour (Towards a World of Equals: Unit -3)
“My Mother doesn’t Work.” “Share the Load.”

Women’s Work: Its Politics and Economics (Towards a World of Equals: Unit -7)

UNIT-IV
ISSUES OF VIOLENCE

Sexual Harassment: Say No! (Towards a World of Equals: Unit -6)
Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: “Chupulu”.

Domestic Violence: Speaking Out (Towards a World of Equals: Unit -8)
Thinking about Sexual Violence (Towards a World of Equals: Unit -11)
Blaming the Victim-“I Fought for my Life…..” - Additional Reading: The Caste Face of Violence.

UNIT - V
GENDER: CO - EXISTENCE

Just Relationships: Being Together as Equals (Towards a World of Equals: Unit -12)
Additional Reading: Rosa Parks-The Brave Heart.

TEXTBOOK
All the five Units in the Textbook, “Towards a World of Equals: A Bilingual Textbook on Gender” written by A. Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu and published by Telugu Akademi, Hyderabad, Telangana State in the year 2015.

Note: Since it is an Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

REFERENCE BOOKS:
2. Abdulali Sohaila. “I Fought For My Life…and Won.” Available online at:
 http://www.thealternative.in/lifestyle/i-fought-for-my-lifeand-won-sohaila-abdulal/